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Description of a Particle with Arbitrary Mass and Spin* 
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A Lorentz covariant description of a particle and antiparticle with spin s = 0, J, 1, • • • and finite rest 
mass is given in this paper. The wave function has 2(2s+l) components so that no auxiliary conditions 
are needed. The basic idea is to postulate the rest-system Hamiltonian and make the Lorentz transformation 
to the laboratory system. An algorithm which is a generalization of the Foldy-Wouthuysen transformation 
is found for constructing the laboratory-system Hamiltonian and polarization operators. 

I. INTRODUCTION 

IN developing descriptions of free particles with spin, 
one can work in terms of wave functions and 

equations of motion as was done by Dirac,1 Fierz and 
Pauli,2 Duffin,3 Kemmer,4 and Foldy,5 in terms of 
representations of the Lorentz group as was done by 
Bargmann and Wigner,6 or in terms of state vectors 
labeled by momentum and polarization as was done by 
Jacob and Wick.7 The group theoretical discussion 
establishes that a particle-antiparticle may have spin 
s = 0, | , 1, • • • and that, for a given momentum, there 
are 2(2s+l) states if the mass is not zero, 2 states if 
the mass is zero. For a particular type of particle, a 
description in terms of wave functions is perhaps of 
more value than an abstract description. The reason is 
that such a description not only includes the information 
in the abstract theory but also facilitates many types of 
calculations and suggests how interactions can be 
included. For example, in several cases, to find the 
electromagnetic interaction one takes advantage of the 
gauge invariance and replaces p by p—eA. 

Two types of wave equations for arbitrary spin 
particles have been studied previously. In the first, as 
exemplified by the Dirac-Pauli-Fierz theory, the wave 
function has simple Lorentz transformation properties. 
However, it is difficult to make detailed calculations 
because there are auxiliary conditions relating the 
components of the wave function. In the second type, 
developed by Foldy,5 there are no redundant compo­
nents or auxiliary conditions. However it is difficult to 
construct interactions because the transformation 
properties of the wave function are complicated. 

It is desirable to have a description without auxiliary 
conditions on the wave function and also with simple 
Lorentz transformation properties so that reactions 
between particles with different spins can be easily 
studied. The purpose of this paper is to show that such 
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a description can be made. A particle of spin s is 
described by a 2(2s+l) component wave function that 
transforms in a way similar to the Dirac wave function. 
The wave function components are proportional to 
certain types of spinors so that it will be possible to 
make interactions between particles of different spins 
simply by a contraction of spinor indices. There is a 
well-defined Hamiltonian and a straightforward expres­
sion for the plane wave solutions for a particle of 
any spin. 

The basic idea can be shown by using the Dirac 
theory as an example. The Lorentz transformation for 
a Dirac wave function between two coordinate systems 
with relative velocity v is 

^/(#') = exp[— !«• (v/z>)arctanhzf|^(a;). (i) 

For a state of definite momentum q the transforma­
tion from the rest to the lab frame is then 

\f/L= exp[|a- ( q / ^ a r c t a n h ^ / E ) ] ^ , (2) 

where E is the energy, (q2-\~m2)112. It has been shown by 
Good and Rose8 and by Bollini and Giambiagi9 that 
this transformation can be generalized into an operator 
which when applied to any particle or antiparticle state 
gives the result 

^L=(E/my/2e-iFipR. (3) 
Here 

E+w=±:/3a«p 
e±iF = (4) 

Z2E(E+m)2 1/2 

is the Foldy-Wouthuysen10 operator, p is — iV, and E 
is (p2-j-m2)112. The operator for the sign of the eigenvalue 
of the Hamiltonian, which is + 1 for a particle and — 1 
for an antiparticle, is ft in the rest system and H/E in 
the lab system. These operators are related by 

H/E=e~iFpe+iF. (5) 

Equations (4) and (5) lead to 

H=a*i*+fiin, (6) 

the usual Dirac Hamiltonian. Thus, the knowledge of 
8 R . H. Good, Jr. and M. E. Rose, Nuovo Cimento 24, 864 

(1962). 
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the transformation property of the wave function and 
the assignment of /5 as the rest-system sign operator 
leads to the Hamiltonian for the system. 

This procedure can be generalized to any spin, as 
justified in detail in the next section, by defining f3 and 
a to be the 2 (2s+ l ) order matrices 

/ 0 1\ 1/8 0 \ 

M ) , «=-( J- W 
\ i 0/ Ao - s / 

There is a generalization of the Foldy-Wouthuysen 
transformation operator, Eq. (4), which is not in 
general unitary. The Hamiltonian, polarization, and 
other physical operators are well defined. Simple 
formulas for plane-wave solutions are obtained. In the 
massless limit, obtained simply by setting m = 0, all 
but the solutions parallel and antiparallel to the 
momentum vanish. In the same way as the theory for 
an electron reduces to the theory of the two-component 
neutrino with Hamiltonian «y«p, the arbitrary spin 
theory reduces to the (2s+ l ) order theory with 
Hamiltonian s • p/s, coinciding with an earlier treatment 
of massless particles.11 The spin zero specialization is 
the Schrodinger-Klein-Gordon theory in a two-compo­
nent form. The spin one specialization is the Duffin-
Kemmer theory in a six-component form with a new 
Hamiltonian different from that of Taketani and 
Sakata.12 

Jordan and Mukunda13 also have given a process for 
constructing 2 (2s+ l ) component wave equations by 
making a unitary transformation of Foldy's equations. 
Their description is, however, different from the one 
given here because their transformation is (except for 
spin one-half) unrelated to the rest-to-lab Lorentz 
transformation. 

II. BASIC EQUATIONS 

Consider first the case of nonzero rest mass. Let the 
wave equation in the rest system be 

m^\pR=id\pR/dtR, (8) 

where the R subscripts indicate rest system quantities. 
The solutions can be written in the form 

4/Rek(e,tR) = vRtk(e)exp(—iemtR), (9) 

where the vRek are the solutions of the eigenvalue 
problems for the rest-system Hamiltonian 

(3fnvRek=etnvRek (10) 

and the rest-system polarization 

Pe'SvRek=kvRek. (11) 

u C. L. Hammer and R. H. Good, Jr., Phys. Rev. 108, 882 
(1957) and 111, 342 (1958). 

12 M. Taketani and S. Sakata, Proc. Phys. Math. Soc. Japan 22, 
757 (1939). 

13 T. F. Jordan and N. Mukunda, Phys. Rev. 132, 1842 (1963). 

Here e is ± 1 , k = s, s— 1, • • •, — s, and e is an arbitrary 
unit vector giving the quantization direction for the 
polarization. 

For Lorentz transformations continuous with the 
identity 

xa =aapXp (12) 

(the Greek indices run from 1 to 4 and x± is it), the wave 
function transformation is postulated to be 

* ' (*0=A(*)*(*) , (13) 
where 

A W = ( n ,. * J> (14) 

\ 0 exp (^* - s ) / 
and T is a three vector with complex components. For a 
space rotation through an angle 6 in the right-hand 
sense about the direction 0/0 the parameter T is 0 
itself and the transformation reduces to 

tf(x') = exp(iO-s)t(x). (15) 

For a pure Lorentz transformation, the primed 
axes having velocity v relative to the un primed, * 
is i(\/v) arctanhfl and the transformation becomes 

$'(%') = exp[—SOL- (v/v)arctanh*f]^(ff). (16) 

I t is known that this is the correct transformation rule 
for a Dirac spin \ wave function but one may ask if it is 
sensible also for other spins. I t is clear that there is a 
one-to-one correspondence between these transforma­
tions and Lorentz transformations. This correspondence 
is preserved when transformations are applied succes­
sively. To see this one simplifies the product 

A(TA)A(*JB) = A(T<7) (17) 

by using HausdorfPs14 theorem 

eAeB=eA+B+l[A,B]^+"> /jg\ 

where only higher order commutators appear in the 
exponent. The calculation of TC depends only on the 
commutators of the spin matrices which are the same 
for all spins. Since the correspondence is preserved for 
spin J, it follows that it is preserved for all spins. 

The transformation rule of Eq. (13) can be under­
stood also from the point of view of spinor analysis. A 
symmetric spinor with 2s lower dotted indices gives an 
irreducible representation of the Lorentz group. I t has 
2 s + l independent components which, when reorgan­
ized into matrix form, transform according to the rule 

x V ) = [exp(*Vs)]xO*;). (19) 

The spinor defined by 

<P=(Csx)*, (20) 
14 F. Hausdorff, Leipzig, Ber. Ges. Wiss., Math-Phys. Kl. 58, 

19 (1906). 
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TABLE I. The transformation operators S and S~x. 

B243 

Spin 

Zm(E+tn) + (E+m)cr p(3+(a- p^JwCE+m)]-1 

[ - (E+tn) (E-Sm) - (E- 13m)a- p/3+9(a- p)2 

+9(E+m)-1(a-p)3/3][32m3(£+m)]-1/2 

1 
(m/E) £E+m-€P p£][2m (£+m) J~112 

t(E+m) (2E2-m2)-m(E+m)a- p/?- (2E+m) (a- p)2][(£+w) (2E2-m2)]-
C(E+w) (lSE2-mE-13m2)- (54E2-Em-41m2)a- p0-9(2E+w) (a- p)2 

+9(£+w)-1(6£+5m) (a- p)3/3>1/2[32(£+m)]-1/2[£(4£2-3w2)]-1 

where C s is a unitary matrix with the property 

C . 8 = - s * C . (21) 
transforms like 

</ (#') = [exp (tx* • s)] <p (#). (22) 

This corresponds to a symmetric spinor with 2s upper 
undotted indices in the usual notation. In these terms 
the wave function consists of a lower dotted spinor and 
an upper undotted spinor 

• ( : ) • 

(23) 

a direct generalization of the Dirac wave function. 
Given the rest-frame wave functions of Eq. (9), the 

laboratory-frame wave functions for a particle or 
antiparticle with momentum q are, from Eq. (16), 

ypek = exp[sa • (q/#)arctanh (q/E)2^Rek 
= exp[sa• (q/g)arctanh(q/E)~\vReh exp(ieqaxa). (24) 

The most general laboratory-system wave function is 
found by integrating over all momenta and summing 
over e and k. The result is 

*(x,*)= (27r)-s/2m* [dpE~l £ Atk(p) 

J €k 

Xexp[secr (p/^)arctanh(^/E)]fli2efc 

X e x p [ f ( p . x - € E / ) ] , (25) 
where A€k(p) are arbitrary coefficients. The factor of ms 

is included for convenience in taking the limit of zero 
rest mass. Also q has been replaced by ep so that the 
symbol p can be used for both the operator — iV and 
its eigenvalue. 

III. GENERALIZED FOLDY-WOUTHUYSEN 
TRANSFORMATION 

Equation (25) may be written in the form 

xP(x,t) = tnsE-1i2St<t>(x,t), (26) 

where St is denned by 

,Si=exp|>a- (p/£)arctanh ( £ / £ ) ] . (27) 

Here p, E, and e are now the operators —iV, (p2+m2)112, 

and (id/dt)/\id/dt\. The function 0 has the form 

*(x,/) = (2TT)-^2 f dpE-V* £ Aek(p)vRek 

J ek 

Xexp[ i (p -x -eJ&) ] . (28) 

I t is clear that <j> satisfies the equation 

E/3<t> = idci>/dt (29) 

and so is Foldy's wave function for a particle of spin s. 
This shows that Foldy's wave function is related to the 
rest system wave function of the particle. 

The exponential in Eq. (27) can be simplified to a 
finite sum, 

St= E cn(a-v/p)n€n, (30) 

where cn depends on p alone, because a«p satisfies a 
characteristic equation of degree 2s-f l , 

ni>-(p/#)-ft]=o. 
k——s 

(31) 

For any specific spin the 2 s + l coefficients cn can be 
found from the 2^+1 independent equations obtained 
by diagonalizing a«p in Eqs. (27) and (30). 

The time-independent operator 

s(v)= E cn{*-v/py 
n=0 

(32) 

obtained by replacing e by 0 in Eq. (30), is equivalent 
to St when it operates on <j> so that 

\l/{x,t)=-msE-li2S<t>(x,t). (33) 

This is the generalized Foldy-Wouthuysen10 transforma­
tion operator in the sense that it converts a rest-system 
function into a laboratory-system function. 

Some special cases for 5 are given in Table I. For 
spin | one sees that S is (E/m)ll2e~iF, where eiF is the 
Foldy-Wouthuysen transformation matrix. In general 
msE~1,2S is not a unitary matrix as it is for spin \. 
This is related to the type of invariant integral appro­
priate for the various spins as discussed in Sec. VI. 

Jordan and Mukunda13 have given a different general­
ization of the Foldy-Wouthuysen transformation for 
all spins. Their transformation is designed to produce a 
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TABLE II. Hamiltonian operators H. 

Spin H 

0 0E 
i a* p+w/3 
1 [ (2£ 2 -w 2 )^+2i ia - p -2 (a - p)2/3]£(2E2-m2)-
f [ ( 9 £ 2 - 7w2) WJS+2 (13E2- 10i»2)a • p 

-9m(a- p)2/3-18(a- p)8][2(4E2-3w2)]-1 

generalization of the Foldy-Wouthuysen position 
operator. I t is unitary and is unrelated to the Lorentz 
transformation except for the spin one-half particle. 

To calculate the inverse of S one observes that it also 
must have the form 

S~'= E dn(*.V/p)nPn. 
n=0 

(34) 

The condition SS~1=1, together with Eq. (31), gives 
a set of linear equations from which the coefficients dn 

can be found. The inverses for s<3/2 are given in 
Table I. 

The result of these considerations is the similarity 
transformation 

B = R-1t2SBSr-1E1*2. (35) 

For spin \ this coincides with the Foldy-Wouthuysen 
transformation and in general it is to be interpreted as 
the transformation from the rest to the laboratory 
system. 

IV. HAMILTONIAN AND POLARIZATION 
OPERATORS 

In the rest frame the sign operator ft and the polariza­
tion /3s are the operators of interest. The sign operator 
H/E and the polarization in the laboratory are found 
by making the similarity transformation. 

For the sign operator one writes 

H/E=SI3S- (36) 

I t is clear that H is the tlamiltonian since Eqs. (29) 
and (33) yield 

Hf=ify/dt. (37) 

The Hamiltonians for s<3/2 are given in Table II . 
Using the sign operator H/E, one can express 5 - 1 in 

the alternate form 

S~'= £ (-l)»Cn(*-p/p)»(H/E)», 
w=0 

where the cn are the same coefficients as in Eq. (30). 
To prove this one notes that St~

l is found by replacing 
p by — p in Eq. (30) and that e can be replaced by 
H/E when it operates on \f/. 

The polarization operator 0 is defined by 

From the properties of /3 and s it follows that 

[O , iTJ -=0 , (40) 

[Pifld-=Um{H/E)Ok. (41) 

For spin J, 20 is the usual three-vector polarization 
operator of Dirac theory.16 For higher spin the detailed 
formulas for 0 are complicated. For example for spin 1 
one finds 

0 = [m(E2—m2){2E2—w2)]~1{w(w2/5s«p+2itS'po:*p)p 

- £ 3 p X ( p X / 3 s ) - i £ ( £ 2 - m 2 ) [ p X s , p - s ] + 

- £ 2 [ p X ( p X s ) , a - p ] + - i ( £ 2 - w 2 ) 2 p X « } , (42) 

where [ ] + denotes the anticommutator. However in 
general the operator 0 • p has the simple form 

O-p = ( # / £ > . p . (43) 

This result follows from Eq. (36) and the fact that s»p 
commutes with S. 

The functions ipek of Eq. (24) are the simultaneous 
eigenfunctions of H and 0 • e, 

H\f/€k=eE\pek, 

0-e\pek=k\l/ek, 

(44) 

(45) 

as can be seen from Eqs. (10) and (11). One can replace 
e by p/p to get eigenf unctions of O • p. 

V. LORENTZ COVARIANCE 

Consider the wave function of Eq. (25) rewritten in 
the form 

*(x,*)= (2ir)-8/2*i- [dpE-i £ A€k(p) 

(38) e = 2 

XA[—ie(p/^)arctanh(#/£)>j2e* 

X e x p [ i ( p - x - € £ 0 ] (46) 

and a proper Lorentz transformation as given by Eqs. 
(12) and (13). The covariance of the theory can be 
demonstrated by showing that the wave function in 
the primed system has the same form. 

A property of Lorentz transformations is 

A (T)A[— ie (p/^)arctanh (p/E)] 

= A [ - i e ( p 7 ^ , ) a r c t a n h ( ^ / £ / ) ] A ( e ) . (47) 

For the special case of pure rotations, 0 is * and for the 
special case of pure Lorentz transformations, 

p X v | p X v | 
arctan . (48) 

| p X v | [ l + ( l - f l 2 ) 1 / 2 ] ( £ + m ) - 6 p . v 

Equation (47) can be easily verified for spin \, The 
validity for all spins then follows from Eq. (18). Also 
one may write 

A f e K ^ l i ^ ^ ^ ^ o ) . 

0 = 5j3s5t-1. (39) 

(49) 

" D. M. Fradkin and R. H. Good, Jr., Rev. Mod. Phys. 33, 
343 (1961). 
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On combining Eqs. (13), (47), and (49) and changing 
integration variable from p to p' according to pj = a^py, 
one finds 

^ ' ( x ' / ) = (27r)-3/2m* fdp'E'-1 L Ael'(p') 

XA[(-f €(p7# /)arctanh(^7JE ,)>««i 

X e x p p C p ' - x ' - e E Y ) ] , (50) 
where 

^.z /(p ,) = E*©«c.)(e)^€ j b(p) . (51) 

This demonstrates the covariance of the theory and 
gives the transformation rule for A. 

For space reflection, combined inversion, and time 
reflection, 

Xi=—%i, t' = t; (52a,b) 

let the corresponding wave function transformations be 

^ M = # W , (53a) 

* V ) = # [C*(*)^ (53b) 

^ (xO = 75/3[C^(x)]*, (53c) 

where, in the representation of a and 0 given in Eq. (7), 

/ 0 Cs\ 
C=( ) , (54) 

/ - l 0\ 
7 5 = • (55) 

\ 0 + 1 / 

The factors of i are included in Eqs. (53) to make the 
charge conjugation defined below covariant. Also 
factors of ± 1 would be needed to specify the relative 
parities and time reflection properties of the particles; 
these are disregarded here since only the free particles 
are under discussion. The C matrix has the properties 

C*C= 1, 

CocC-^a*, 

c^c-1--/?*, 

C s C - ^ - s * , 

C T S C - ^ - Y S * , 

CA(^)C-1=[A(,)]*. 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

When Eqs. (46), (52), (53) are combined one recovers 
Eq. (50) with the following transformation rules for A : 

Aek'(v
f) = ieAek(v)7 (62a) 

^«* ,(p ,) = i ( - l ) M f r f l C ^ - . * ( - P ) ] * , (62b) 

Ajtf)= ( - l ) ^ D 4 e , _ * ( p ) ] * , ' (62c) 
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where p '= — p. Here the phases of the functions are 
chosen so that 

[C ,^ i*]*=(- l )^*€»_ e | i f c . (63) 

The theory is therefore covariant with respect to these 
transformations. 

The theory is also invariant to the charge conjugation 

fc(x) = ZCf(x)]*. (64) 

It. follows from Eqs. (58), (60), and (61) that this 
correspondence is invariant to Lorentz transformations, 
including the reflections. A property is that 

[ ^ ( s ) ] * = ( - l ) 2 * t y ( s ) . (65) 

This follows from Eq. (54) and the fact that 

C.*C.= ( - 1 ) 2 ' , (66) 

which can be derived from Eq. (21) and the unitarity 
of Cs.

16 

For spin greater than zero C is determined within a 
phase factor by Eqs. (56) to (59). Since these equations 
are needed for the Lorentz covariance of the charge 
conjugation, the charge conjugation operation is essen­
tially unique. 

The previous discussion applies for spin zero in 
which case s = 0 and C s = 1. However for spin zero, since 
S=lf the theory is also invariant to the substitution 

f=&. (67) 

Accordingly, factors of fi may be inserted in the defini­
tions of the reflections and charge conjugation. For 
example a consistent set of assignments replacing 
Eqs. (53) and (64) is 

tf'VHlK*), (68a) 

^ V H - D W T ) ] * , (68b) 

^ ( ^ ) = 75[/3C^W]*, (68c) 

^ H - W ] * , (69) 

where here /3C is 75. I t is shown later that these are the 
standard assignments of the usual Klein-Gordon theory. 
With this type of charge conjugation one has (\pc)c=\p 
in contrast to Eq. (65). 

VI. PHYSICAL ASSIGNMENTS 

For each spin, one can define an inner product by 

(*<i>, *<»>)= [E-idVj:A€kWb)*A€k™(p). (70) 
J «& 

I t is clear that this defines a positive definite Hilbert 
space. Furthermore, the inner product is invariant to 

16 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 
Press Inc., New York, 1959), Appendix C. 
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TABLE III. The invariant integrals (^(Z) \pM). 

Spin Integral 

The infinitesimal displacement operators 6$ found 
from the transformation rules for \f/(x) are p, H, 

f dx^tE^M 

J=xXp+s, 

Gf=xH—tp—iscL. 

(78) 

(79) 

dxfiWtyw 

2 E [ £ 2 - ( a - p ) 2 ] - w 2 £ 

m*(2E2-m2) 

9[E 2 - (a : -p) 2 ] -7m 2 

fax]; (Z)f ^ (n) 
2m2(4£2-3m2) 

For space and time displacements the assumption that 
\p'(x') = \p(x) leads to the operators p and H. The 
operators J and G^ follow directly from Eqs. (15) and 
(16). In particular for a pure Lorentz transformation 
with infinitesimal relative velocity v one finds 

*'(*)= ( l - i v . , G ^ ( * ) . (80) 

the Lorentz transformation given in Eqs. (13), (53a), 
(68a) in the sense that 

( ^ ( 0 ? ^ ( n ) ) = = ^ ( O j ^ ( n ) ) 4 (71) 

The proof for the transformations continuous with the 
identity follows directly from the transformation rules 
for the Aek given in Eqs. (51). When a charge conjuga­
tion is involved, the result is 

The corresponding operators 0$ are p, /3E, J, and 

G0 = i(x£}3+£)Sx)-/p+(w+E)-1pX8j8. (81) 

The first three follow directly from Eqs. (36) and (75) 
and the fact that p and J commute with E~mS. The 
expression for G<j> can be derived from the explicit 
formula for cj>(x) and the transformation rule for A «J(P)> 
Eqs. (28) and (51). One writes 

*'(x,*) = (2TT)-3/2 [dj>'E'-«* E Atk'(p')vBek 

( ^ / ( 0 ? ^ ( « ) ) * = ^ ( Z ) j ^ ( n ) ) # (72) 

In terms of Foldy's wave function, Eq. (28), the 
inner product has the form 

(^>,^(»>)= /dx0t<o(s)0(»>(3). (73) 
• - / • 

In terms of the laboratory system functions \p(x) the 
general form is 

(rf/wj ^(»)) = w -2 . dxiP^EiS-^S-1^. (74) 

Some special cases are given in Table III. 
Given an operator 0^ which acts on ^, there is a 

corresponding operator 6$ which acts on <£. The 
relationship between them is seen from Eq. (33) to be 

Q^S-iE^Q+E-1^. (75) 

It follows from Eqs. (74) and (75) that, if 0$ is Hermi-
tian in the usual sense 

fdxiO^y^^ [dxtf^e^, (76) 

then 0^ is Hermitian in the sense that 

(e^ l \ ^ n ) ) = fy«\ e^(n)) • (77) 

For example H/E and 0 are Hermitian by this definition 
since /3 and /3s are Hermitian in the usual sense. How­
ever, 0 is not Hermitian in the sense of Eq. (76). 

Xexp[i(p'-x-€£'/)], (82) 

substitutes the infinitesimal Lorentz transformation 

p ' = p - v e E , (83) 

E' = £ - e v p , (84) 

and expands to first order in v. To this order Eqs. (49) 
and (51) yield 

E ^ e / ( p / ) ^ e Z = E ( l + i 0 . s ) ^ e ^ € z ( p ) , 
el el 

where, from Eq. (48), 

0=e(£+m)-1pXv. (85) 

The result of all these substitutions is 

0'(a)=(l-iv-G*)0(aO. (86) 

As expected, since <f> is Foldy's wave function, these 
operators are the ones he proposed5 in order to obtain 
an appropriate representation of the Lorentz group. 
One sees that p, /3E, J, and G0 are Hermitian in the 
sense of Eq. (76) so that p, H, J, G$ are Hermitian in 
the sense of Eq. (77). 

The conserved quantities corresponding to the dis­
placement operators are 

Pi=ty,W/E)PiV)= [d*Mp4, (87) 

Pi=i(4*,(H/E)H4<) = i / dxtfE<j>, (88) 
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®u=-®u=i (*, (H/E)G^) = i f dxffipGtd. 

(89) 

(90) 

The first three are the expectation values of the momen­
tum, energy, and angular momentum and the last gives 
the center of energy theorem. The justification for these 
definitions is that PM is a Lorentz four vector and that 
®M„ (with ©44=0) is an antisymmetric tensor. The proof 
of the tensor properties follows from the commutation 
rules between the operators (these are listed by Foldy5) 
and the fact that the operators are Hermitian. For 
example, to make the proof that PM is a four vector, one 
again considers the infinitesimal pure Lorentz trans­
formation with relative velocity v. Then it is seen that 

dxtfipprf' 

= j < f c [ ( l - t v G * t o j 0 f r ( l - t v G , ) 0 

= Pi+iviPi> (91) 

and similarly 
P 4 ' = iV-*V-P , (92) 

so that PM is indeed a four vector. P^ and @M„ are regular 
by space reflection and pseudo by time reflection. 

Two other conserved quantities are the number of 
particles 

and the charge 

VII. SPECIALIZATION TO ZERO MASS 

(93) 

(94) 

In principle the entire theory presented so far follows 
from the expression fox\p(x) given in Eq. (25). One can 
obtain the special case of zero rest mass simply by 
evaluating this formula for \[/(x) at rn=0. 

Let Eq. (25) be rewritten in the form 

J ek 

XStvRek(v) expRCp-x-eE*)] , (95) 

where St is defined in Eq. (27) although with ^ and p 
no longer operators. The different amplitude Aek and 
eigenvector ^ ^ ( p ) occur because the quantization 

direction e in Eq. (11) has been changed to the p 
direction. 

Consider a matrix R that commutes with 75 and such 
that 

Br*s-(p/p)R=s*. (96) 

If a representation with $3 diagonal is chosen, then, 
since 75 is also diagonal, it follows that R^StR is 
diagonal. The diagonal elements are 

[ > 3 ] = ( J , * - 1 , s;s, s), (97) 

[R-1StR~] = (e»s, e^s~l) • • • e^8; e-"s • • • e»s), (98) 

where 

ju= e arc tanh(^/E) . 

However e±fi simplifies to 

e±^=(Edtzep)/m. 

(99) 

(100) 

Therefore when the factor of ms is included only certain 
of the diagonal elements, corresponding to the dbs 
eigenvalues of s3, survive and one finds 

[w-lt-15«R]m-o= (2py(h(l+e), 0- • -0, i ( l - e ) ; 
£ ( l - e ) , 0 . . . 0 , i ( l + € ) ) . (101) 

This result leads to a considerable simplification in 
Eq. (95) since 

(msStVRtk)m^=R(m8R-1StR)m=oR-1VRek 

= (2^)'H(l+75)«*.-.+i(l-7B)fijb,.>i8«*. (102) 

Here use is made of the fact that R~lVRek is an eigenfunc-
tion of (Us*. The wave function for zero rest mass is 
therefore 

IX* : ) ] m = o = 2 5 ( 2 7 r ) - 3 / 2 f ^ s - 1 i ; [ l e , - i ( l + 7 5 ) ^ , - s 

+l€tS%(l-y5)vRets~]exp[i(p-x-eEt)2. (103) 

Thus the wave function for arbitrary spin and mass 
decouples when the mass is zero in the same way as the 
Dirac wave function for an electron decouples into two 
two-component neutrino functions. 

The detailed connection between the theory for finite 
mass and the theory for zero mass may be exhibited by 
showing the connection between the corresponding 
wave functions. I t is known that the wave function for 
a massless particle with spin s has 2 s + l components, 
has a Hamiltonian s-p/s, and may be written in the 
form11 

$=(2*)-*'*[dpp*-1'£Kt(p)u€ 

X e x p p ( p - x - e £ 0 ] , (104) 

where Ke(p) is a scalar (except for phase factors) ampli­
tude and the functions ue satisfy 

p'SUe~epSUt. (105) 
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I t is clear that the eigenfunctions are related through 

' ) , (106) 
1 / u±e' 

fl«€,±. = — ( 
V 2 W ± € 

so the connection is simply 

(107) 

when an appropriate identification of the K's and 
A's is made. 

VIII. DISCUSSION 

The above theory is of course identical with Dirac 
theory for spin | . For spin 1 Foldy5 has shown in detail 
the connection between the wave function cj> and the 
Proca wave function. The relation between the two-
component spin zero wave function xf/ and the usual 
Klein-Gordon spin zero wave function 0KG is 

1 / 0KG \ 

and between the invariant integrals is 

(108) 

= - dx((j>KG ( * ) *_ 
dfc , ( • « ) 

dt 

6>KG(Z)* \ 
•— ~0KG(W) 

dt / 
(109) 

where H/E is simply /3 for spin zero. Relative to the 
reflections of Eq. (52) the usual transformation rules 
for the wave function 0KG are 

0 K G ' ( # O = 0 K G ( # ) , 

<£KG'(<)==<£KG*(#). 

Also the charge conjugation is 

0KG C (#)=0KG*(#) -

(110a) 

(110b,c) 

(111) 

When these assignments are substituted into Eq. (108) 
one finds the rules given in Eqs. (68) and (69). 

Since the spin zero charge conjugation operation of 
Eq. ( I l l ) or (69) has period two, it is possible to impose 
the condition 

xPc(x) = xl/(x) (112) 

and obtain a self-charge-conjugate theory. However as 
seen from Eq. (65) the charge conjugation operation of 
Eq. (64) has period two only for half-integer spin. 
Therefore for integer spin greater than zero one cannot 
make this theory self-charge-conjugate. The situation is 
different for the (2 s+ l ) component zero mass theory 
since it does not have charge conjugation invariance. 
Also Eq. (65) permits the arguments about superselec-
tion rules17 to be extended to interactions involving 
high spin particles. 

As well as a charge conjugate function, a CP-
conjugate function can be defined by 

f°*te)=i$[cf(-x,t)i*. (113) 

I t follows from the covariance of the equations of 
motion relative to the CP transformation, Eqs. (52b) 
and (53b), that if ^ is a solution then \pcp is also a 
solution. I t is found that 

(^CP)CP= ( _ 1 ) 2 « ^ (114) 

Accordingly, self CP-conjugate solutions can be chosen 
for integer spin but not for half-integer spin, just 
opposite to the charge-conjugation result. This CP-
invariance property also applies in the massless limit 
whereas the C invariance does not. For example, for 
the photon CP-conjugate states are those of opposite 
circular polarization and self CP-conjugate states are 
plane polarized. 

Note added in proof: Related papers have been pub­
lished by S. Weinberg [Phys. Rev. 133, B1318 (1964) 
and 134, B882 (1964)] and by M. M. Saffren [Space 
Programs Summary No. 37-25, Jet Propulsion Labora­
tory, California Institute of Technology, 1964 (un­
published), Vol. 4, p. 262]. 

17 See, for example, P. Roman, Theory of Elementary Particles 
(Interscience Publishers, Inc., New York, 1960), p. 271. 


